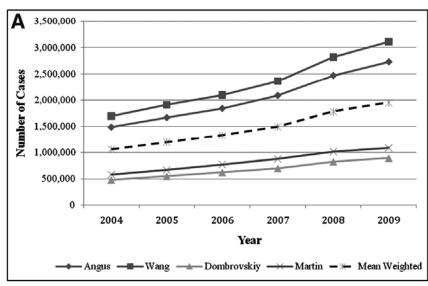
Life after Sepsis

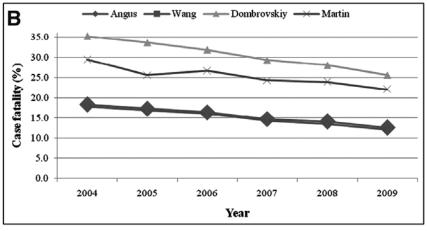
Mark E. Mikkelsen, MD, MSCE
Associate Professor of Medicine
Chief, Section of Medical Critical Care
Perelman School of Medicine
July 2018
Mark.mikkelsen@uphs.upenn.edu

Disclosures

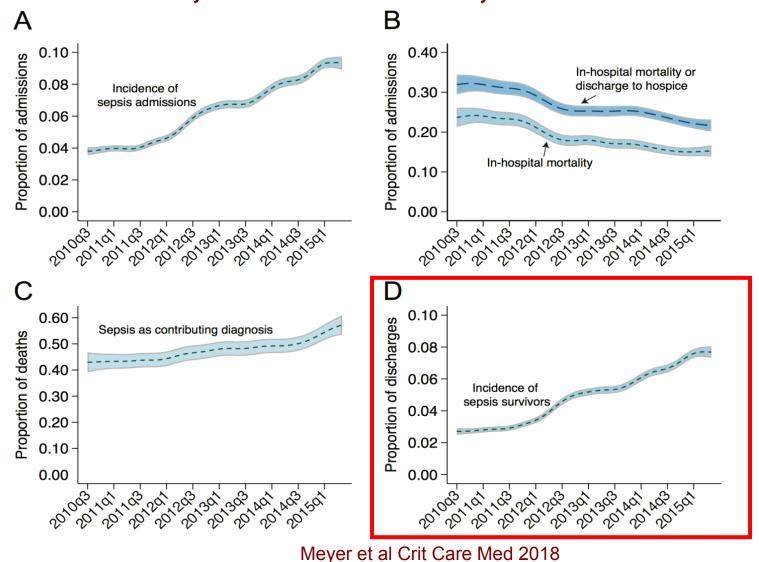
Co-Chair of the SCCM Thrive Supporting Survivors after Critical Illness Initiative

Physician advisor, Commonwealth HAP-HIIN "ExSEPSIS (Exiting with Excellence in Sepsis Care)" Initiative


NIH


- NIH Loan Repayment Program Awardee
- NIH NINR R01 Co-investigator to study hospital readmissions after sepsis in patients discharged to home with home health services

Sepsis Is A Driver of U.S. Health Care

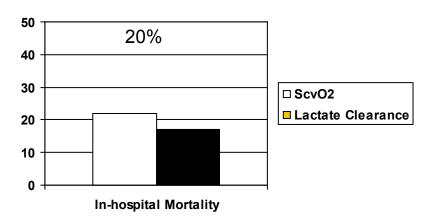

- Sepsis is common & costly
 - \$ 24 billion
- Sepsis, driven by improved recognition, is increasing
- Mortality is decreasing

Gaieski et al Crit Care Med 2013 Lagu et al Critical Care Med 2012 Rhee et al 2017

At Penn, the number of sepsis survivors increased from 1,502 in 2010 to 3,900 in 2015

Septic Shock from 2000 - 2015

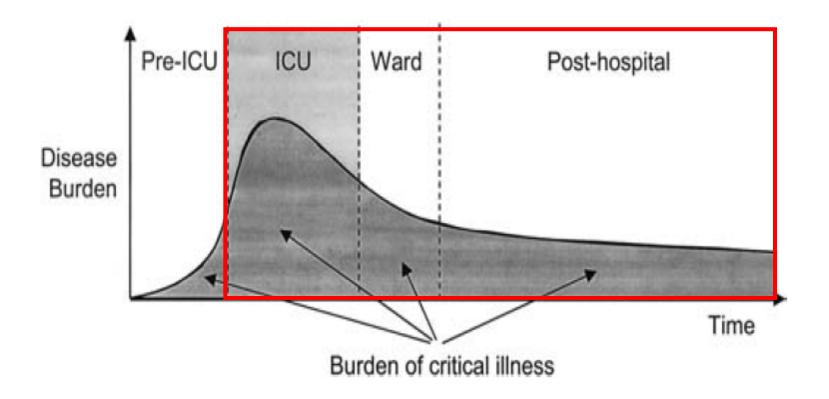
EARLY GOAL-DIRECTED THERAPY IN THE TREATMENT OF SEVERE SEPSIS


AND SEPTIC SHOCK

Lactate Clearance vs Central Venous Oxygen Saturation as Goals of Early Sepsis Therapy

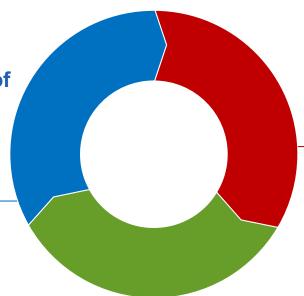
A Randomized Clinical Trial

Rivers et al NEIM 2001


Jones et al JAMA 2010

Process NEJM 2014

Arise NEJM 2014


Sepsis: The 21st Century Perspective

Penn Medicine Sepsis Alliance Overview

The Penn Medicine Sepsis Alliance governs health system sepsis care activities with the goal of improving the early identification of sepsis and optimizing care management.

READMISSIONS:
Reduce the number of 7 day and 30 day readmissions after a hospitalization for sepsis.

RECOGNITION: Maximize recognition of sepsisassociated end organ dysfunction.

ADHERENCE: Improve adherence to the 3 hour SEP-1 bundle for inpatients and in the ED.

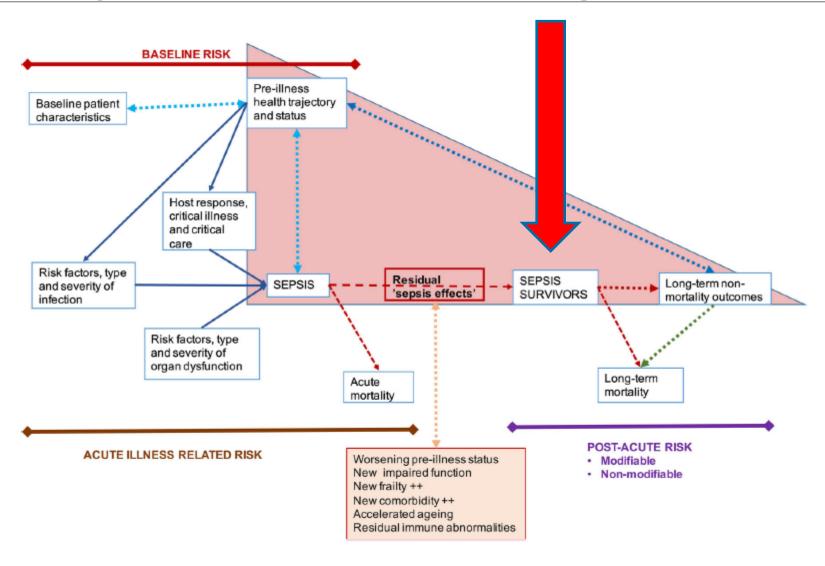
Long-Term Consequences of Sepsis

Neuropsychological impairment

Physical impairment

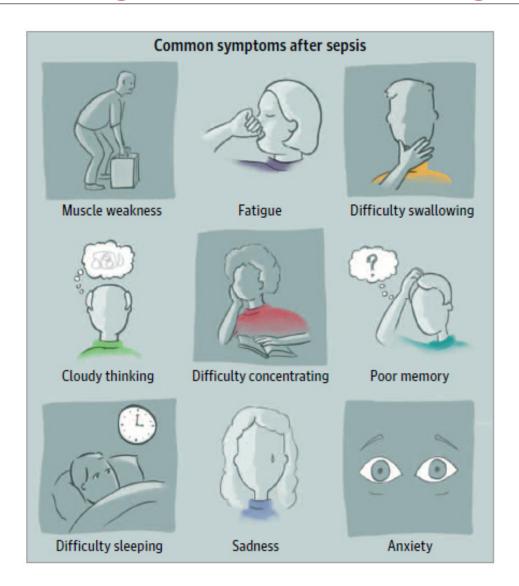
Sepsis-induced inflammation and cardiovascular risk

Sepsis-induced immunosuppression


Long-term health-related quality of life

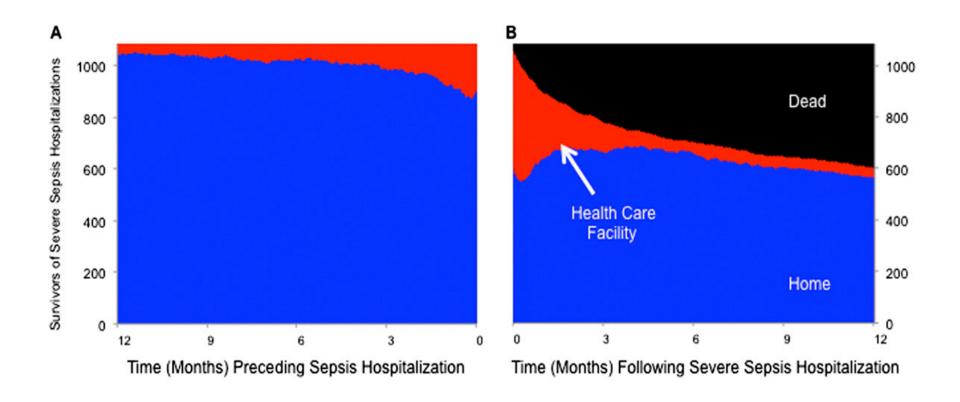
Healthcare resource utilization

Long-term mortality


Maley et al Clin Chest Med 2016

Modify What is Modifiable; Manage What is Not

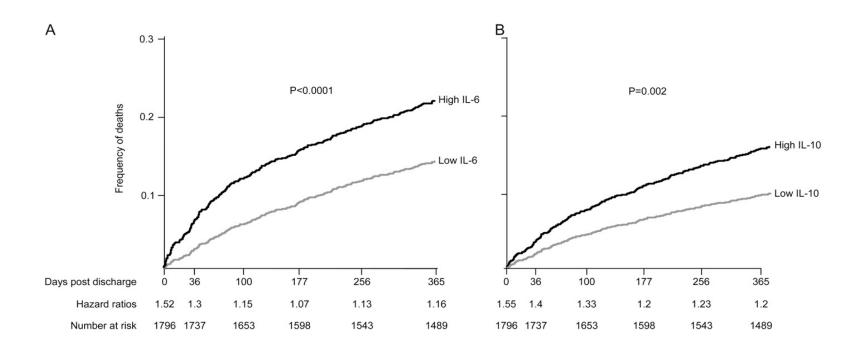
Shankar Hari et al Curr Infect Dis Rep 2016


Management & Self-Management

Are these symptoms factored into your discharge planning?

Prescott et al JAMA 2018

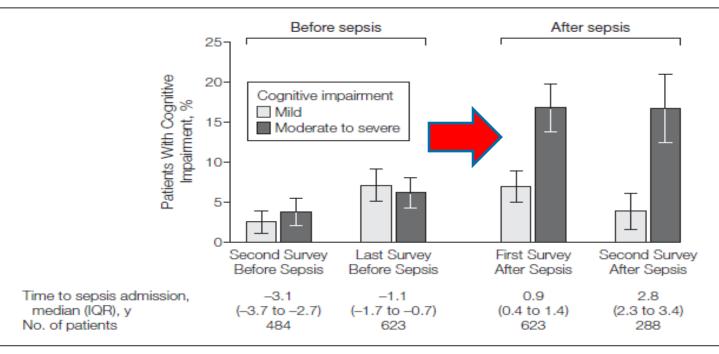
Survival and Healthcare Use After Sepsis


Prescott et al AJRCCM 2014

Mortality after Sepsis

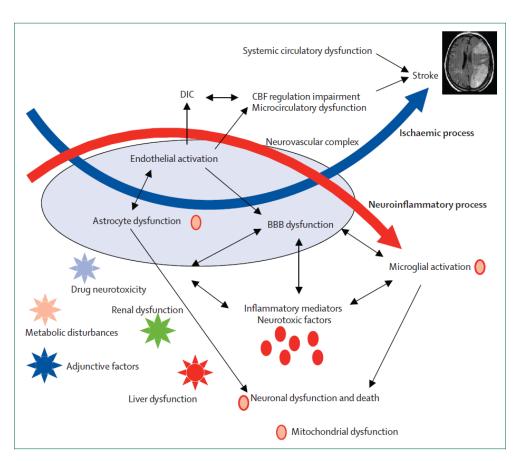
Table 3: Mortality during the Subsequent Year for Patients Hospitalized with Severe Sepsis in the Intensive Care Unit, Matched Intensive Care Unit Control Subjects, Matched Hospitalized with Infection, Matched Hospital Control Subjects, and Matched and Unmatched Population Control Subjects

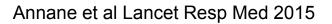
Variables	Developed Severe Sepsis and Required ICU Care (n = 4,179)	Required ICU Care but Did Not Develop Severe Sepsis (n = 4,179)	Hospitalized with Infection but Did Not Require ICU Care (n = 4,179)	Hospitalized Patients (n = 4,179)	Matched Population Control Subjects (n = 4,179)	Unmatched Population Control Subjects (n = 819,283)
Mortality, %* 1-yr mortality 2-yr mortality 3-yr mortality	40.8 51.2 58.9	25.4 36.5 44.3	27.9 38.9 48.2	20.5 30.7 39.1	12.8 21.3 28.5	5.3 10.3 15.3
Mortality for those discharged home, % 1-yr mortality 2-yr mortality 3-yr mortality	27.4 40.1 47.2	17.83 29.2 36.9	21.4 31.6 40.6	16.1 25.5 33.7	_ _ _	_ _ _

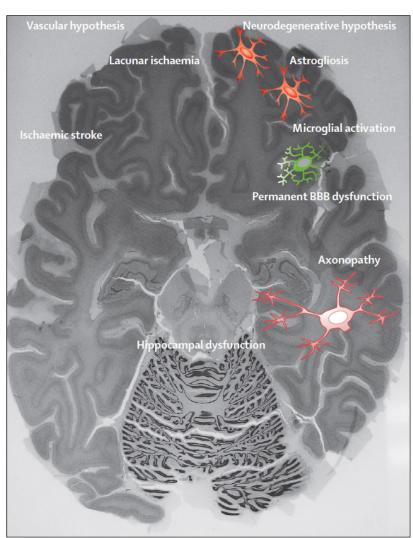

Inflammation (Pro- and Anti-) Persists after Sepsis and is Associated with Mortality

Yende et al AJRCCM 2008

Cognitive Impairment after Sepsis

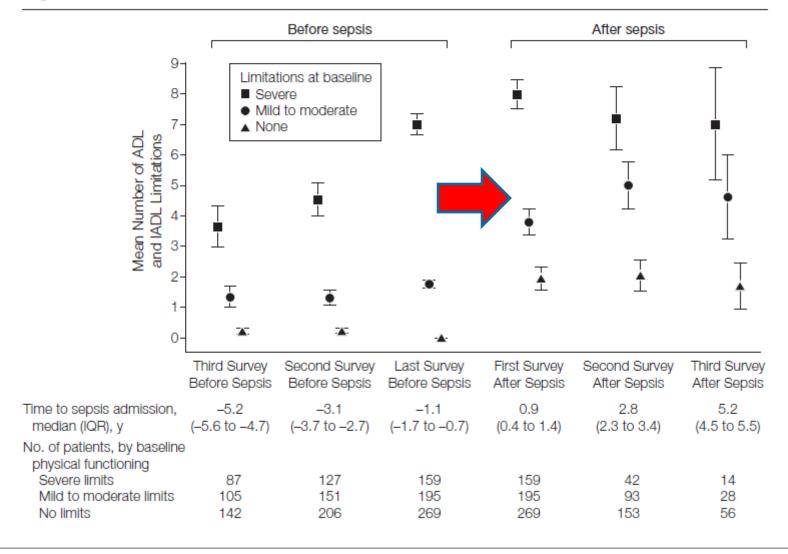

Figure 2. Cognitive Impairment Among Survivors of Severe Sepsis at Each Survey Time Point

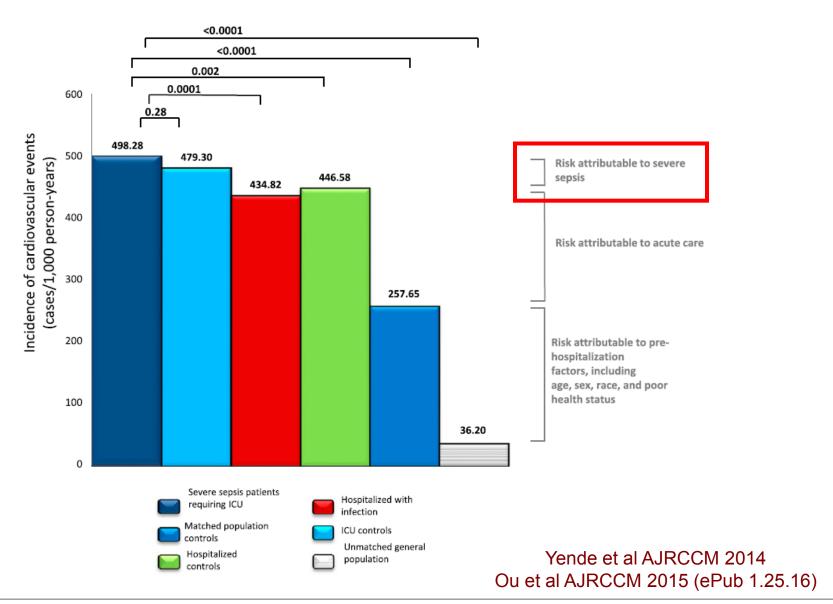



Error bars indicate 95% confidence intervals (CIs); IQR, interquartile range.

Interpretive Example: Compared with stable rates before severe sepsis, the prevalence of moderate to severe cognitive impairment increased from 6.1% (95% CI, 4.2%-8.0%) before severe sepsis to 16.7% (95% CI, 13.8%-19.7%) at the first survey after severe sepsis (P<.001 by χ^2 test; Table 2).

The Perfect Storm of Sepsis





Functional Impairment after Sepsis

Figure 3. Functional Trajectories by Baseline Functioning

Cardiovascular Risk after Sepsis

Atrial Fibrillation and Sepsis

- AF is common during sepsis
 - 25.5% of Medicare beneficiaries experienced AF
 - New-onset AF accounted for one-quarter of cases
- New-onset AF is associated with
 - In-hospital stroke (4-fold higher)
 - In-hospital mortality (1.5-fold higher)

Walkey et al Am Heart J 2013 Walkey et al JAMA 2011

Atrial Fibrillation after Sepsis

	Rate of AF after Sepsis (N, %)					
Time	No AF (N=95,536)	<u>New-Onset AF</u> (N=9,540)	<u>Prior AF</u> (N=33,646)	<u>P-</u> <u>Value</u>		
1 year	7,315 (7.7)	4,193 (44.2)	19,147 (57.2)	<0.001		
2 years	9,760 (10.5)	4,651 (49.3)	20,304 (60.9)	<0.001		
3 years	11,315 (12.6)	4,874 (52.0)	20,695 (62.3)	<0.001		
4 years	12,394 (14.3)	4,987 (53.6)	20,877 (63.1)	<0.001		
5 years	13,080 (15.5)	5,074 (54.9)	20.967 (63.5)	<0.001		

New-onset AF severe sepsis survivors were <u>more likely</u> to be hospitalized post-discharge for heart failure and ischemic stroke and more likely to die

Walkey et al Chest 2014

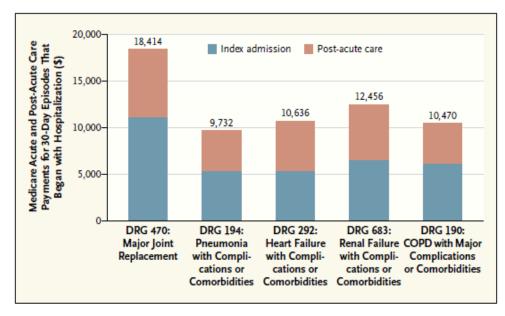
Sepsis-Induced Immunosuppression Viral Reactivation after Sepsis

Virus	Septic	Critically-III Non-Septic	Healthy Controls
	No. positive†/No. tested (%)		
CMV*	86/356 (24.2)	1/89 (1.1)	0/165 (0)
EBV	287/539 (53.2)	18/149 (12.1)	6/165 (3.6)
HSV	76/538 (14.1)	2/150 (1.3)	0/165 (0)
HHV-6	56/539 (10.4)	1/150 (0.7)	7/165 (4.2)
TTV [‡]	179/231 (77.5)	33/55 (63.6)	98/165 (60.1)
JC**	85/238 (35.7)	10/42 (23.8)	
BK**	35/237 (14.3)	4/42 (9.5)	
Any Virus	432/560 (77.1)	62/161 (38.5)	104/165 (63.0)
>1 Virus	239/560 (42.7)	9/161 (5.6)	9/165 (5.5)

[†]Except where indicated, No. positive reflects the number of patients who tested positive in either whole blood or plasma or both. No. tested represents the total number of patients tested.

doi:10.1371/journal.pone.0098819.t002

Walton et al 2014


^{*}Results are from CMV seropositive patients only.

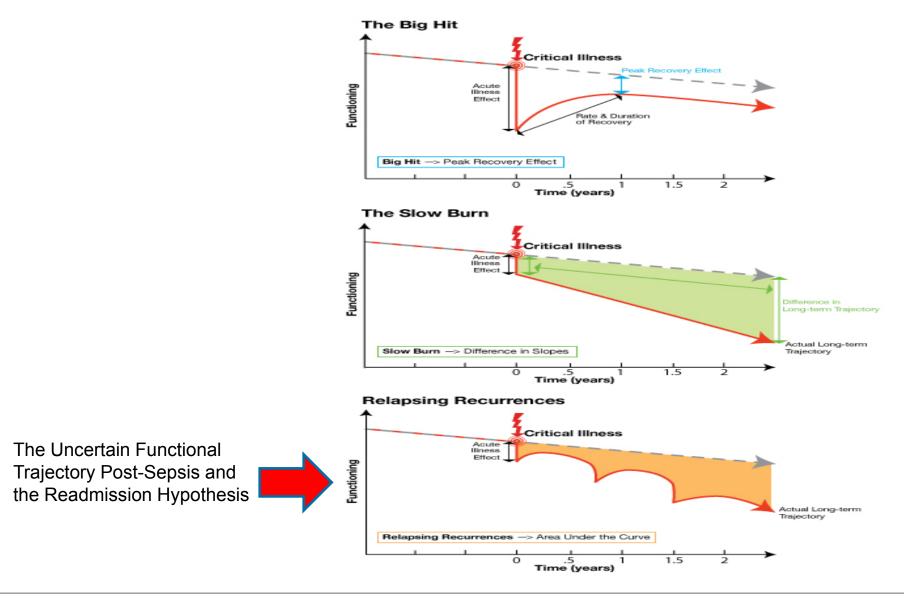
[‡]Tested in plasma only.

^{**}Tested in urine.

Post-Acute Care Use

- Post-acute care costs, including services and placement <u>at discharge</u> and subsequent <u>ED visits</u> <u>and readmissions</u>, are increasing
- The consequences of sepsis may confer an increased risk of postacute care use

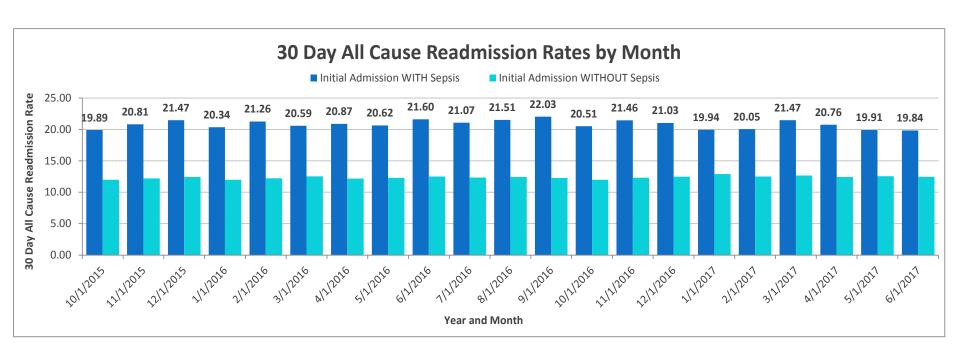
Medicare Acute and Post-Acute Care Payments for 30-Day Episodes That Began with a Hospitalization, 2008.


Data are from Gage et al.³ Thirty-day fixed episodes include the full amount of all claims incurred within 30 days after discharge, including readmissions. COPD denotes chronic obstructive pulmonary disease, and DRG diagnosis-related group.

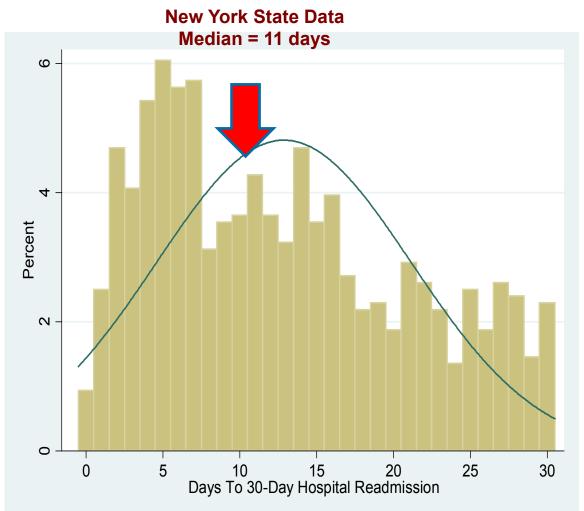
Mechanic et al NEJM 2014

Jencks et al NEJM 2009

Hospital Readmission after Sepsis


Rate and Timing of 30-Day Hospital Readmission After Sepsis

			ŀ
Study	Population	30-day rate	Timing
Elixhauser et al.	Septicemia (N=696,122)	?	
Liu et al.	<u>Sepsis</u> (N=5479)	٠.	11 days
Prescott et al.	Elderly <u>severe sepsis</u> survivors (N=1083)	,	
Ortego et al.	Septic shock (N=269)	j	7 (3 – 15)
Jones et al.	<u>Sepsis (N=1268)</u>		13 (6 – 21)
Jones et al.	Severe sepsis (N=2352)		11 (5 – 18)
Goodwin et al.	Severe sepsis (43,452)	ý	
Donnelly et al.	Severe sepsis (N=216,328)	?	
Chang et al.	<u>Sepsis (N=240,198)</u>	?	


Rate and Timing of 30-Day Hospital Readmission After Sepsis

Study	Population	30-day rate	Timing
Elixhauser et al.	Septicemia (N=696,122)	21.0	
Liu et al.	<u>Sepsis</u> (N=5479)	17.9	11 days
Prescott et al.	Elderly <u>severe sepsis</u> survivors (N=1083)	26.5	
Ortego et al. *	Septic shock (N=269)	23.4	7 (3 – 15)
Jones et al. *	<u>Sepsis (N=1268)</u>	27.0	13 (6 – 21)
Jones et al. *	Severe sepsis (N=2352)	26.2	11 (5 – 18)
Goodwin et al.	Severe sepsis (43,452)	25.6	
Donnelly et al.	Severe sepsis (N=216,328)	19.9	
Chang et al.	<u>Sepsis (N=240,198)</u>	20.4	
Norman et al.	Severe sepsis (N=633,407 Medicare) survivors	28.7	

The New York State Situation

Timing of 30-Day Readmission after Sepsis

- Median 12 days, IQR: 6, 19
- No difference between sepsis and non-sepsis index admissions (p=0.38)
- Severe sepsis
 readmissions occurred
 earlier, compared to sepsis
 admissions (median 11
 days vs. 13 days, p=0.004)

Jones et al Annals ATS 2015

Hospital-Based Acute Care Use after Sepsis

Outcomes, n (%) Non-Sepsis
Hospitalization
(N=108,958)

Readmissions

7-day

5,657 (5.2)

30-day

16,950 (15.6)

90-day

27,968 (25.7)

ED Treat-and-Release Visits

30-day

4,967 (4.6)

Sepsis Hospitalization

N=3,620

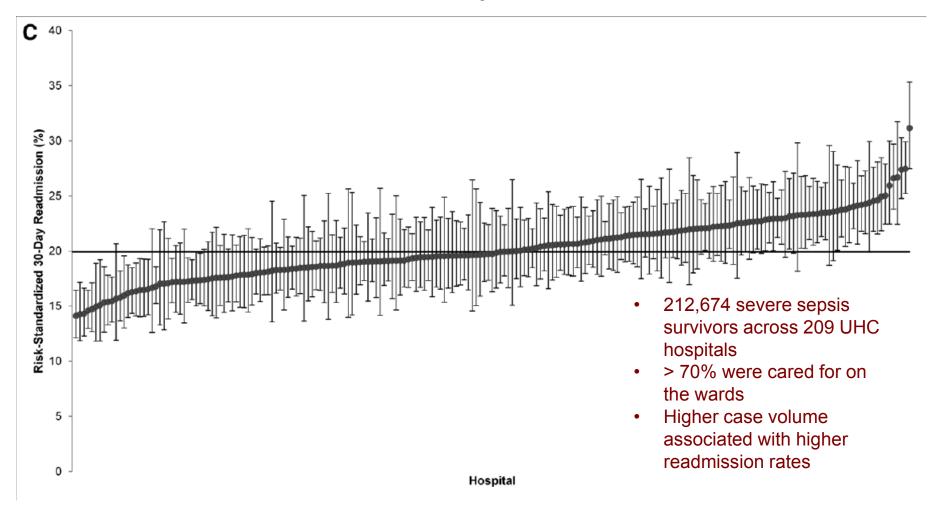
336 (9.3)*

959 (26.5)*

1,533 (42.4)*

139 (3.8) †

Sepsis Drives Hospital Readmissions


Table 1. High-volume conditions ranked by rate of readmission for all causes within 30 days, 2013

Rank	Principal diagnosis for index hospital stay	Number of index admissions	Number of all-cause readmissions	Aggregate cost of readmissions, \$ millions	Rate of all-cause readmission
Total i	index admissions for any cause	28,124,869	3,900,556	52,398	13.9
1	Congestive heart failure, non-hypertensive	782,079	183,534	2,728	23.5
2	Schizophrenia and other psychotic disorders	366,256	83,245	772	22.7
3	Respiratory failure, insufficiency, arrest (adult)	290,892	62,684	961	21.5
4	Diabetes mellitus with complications	486,886	99,108	1,204	20.4
5	Acute renal failure	431,452	87,537	1,190	20.3
6	Chronic obstructive pulmonary disease and bronchiectasis	570,077	114,067	1,384	20.0
7	Complication of device, implant or graft	581,289	111,838	1,973	19.2
8	Alcohol-related disorders	261,072	50,081	366	19.2
9	Septicemia	1,011,496	191,156	3,154	18.9
10	Fluid and electrolyte disorders	358,640	65,704	839	18.3

Courtesy of Hallie Prescott

Readmission Risk After Severe Sepsis Varies Dramatically Across Hospitals

Donnelly et al Crit Care Med 2015

V	VH'	Y	?	
INF	EC	ΤĪ	Ol	N

INFECTION				
36	C. difficile, hospital- acquired pneumonia	C. difficile	Recurrent/ unresolved	4 5
37	Pneumonia	Pneumonia	Recurrent/ unresolved	
38	Pneumonia (fungal)	Pneumonia (fungal)	Recurrent/ unresolved	•
39	Pseudomonal bacteremia	Citrobacter bacteremia (cultures from discharge of initial hospitalization)	Recurrent/ unresolved	•
40	Pneumonia	Pneumonia	Recurrent/ Unresolved	

		Hospitalization Infection	(Chart)	Recurrent/ Unresolved		
	1	C. difficile	Culture negative sepsis	New		
	2	Intraabdominal abscess and bowel perforation	Pneumonia	New		
	3	Neutropenic sepsis, c. difficile	Hepatic abscess	New		
	4	Culture negative sepsis	Urinary tract infection and C. difficile	New		
ļ	5	MSSA and VRE CLABSI	Klebsiella CLABSI	New		
	•	69% of <u>unplanned</u> readmissions attributable to infection via chart review				
	•	51% of infection-related readmissions were categorized as recurrent/unresolved				
	•	19% are same site and same organism				
		Sun et al CCM 2016				

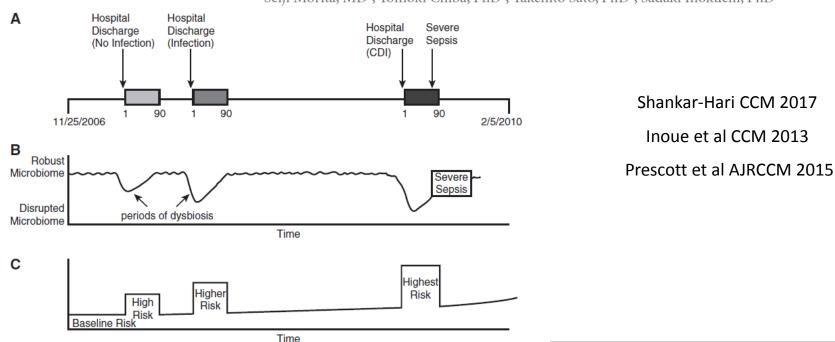
DeMerle et al CCM 2017

Readmission Infection

New or

Patient

Initial

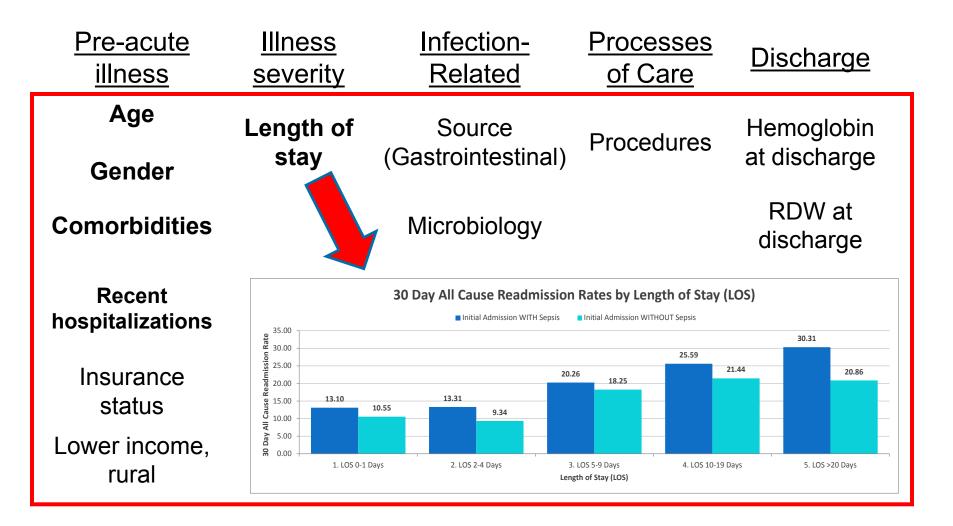

Penn Medicine

Activation-Associated Accelerated Apoptosis of Memory B Cells in Critically III Patients With Sepsis

Manu Shankar-Hari, PhD¹⁻³; David Fear, PhD^{2,4}; Paul Lavender, PhD^{2,4}; Tracey Mare, BSc³; Richard Beale, MBBS^{2,3}; Chad Swanson, PhD⁵; Mervyn Singer, FRCP⁶; Jo Spencer, PhD¹

Reduction of Immunocompetent T Cells Followed by Prolonged Lymphopenia in Severe Sepsis in the Elderly*

Shigeaki Inoue, MD, PhD^{1,2}; Kyoko Suzuki-Utsunomiya, PhD¹; Yoshinori Okada, PhD³; Yumi Iida, BS³; Takayuki Taira, MD²; Naoya Miura, MD²; Tomoatsu Tsuji, MD²; Takeshi Yamagiwa, MD²; Seiji Morita, MD²; Tomoki Chiba, PhD⁴; Takehito Sato, PhD⁴; Sadaki Inokuchi, PhD²


Most Frequent Readmission Diagnoses After Sepsis					
Sepsis 15.0%					
Gengostivo hoart failuro 12 0%					
42% of readmission diag	noses were for				
Ambulatory Care Sensitive Conditions					
A					
The Big 3:					
Infection/Sepsis					
Fluid Balance (Heart failure/Renal failure)					
Respiratory (Aspiration pneumonia, COPD)					
Aspiration pneumonitis 4.2%					
Urinary tract infection 3.9%					

What Do Patients Look Like At Readmission?

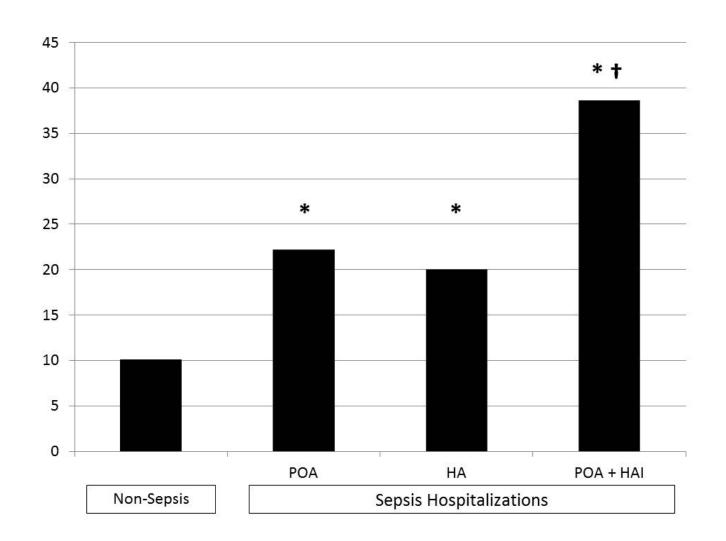
ED Presentation of Unplanned Hospital Readmissions				
Fever upon presentation	25.0%			
White blood cell count, initial	10 (7 – 14)			
Respiratory rate, initial	18 (16 – 20)			
Heart rate, initial 106 (88 – 116)				
Sepsis	63.8%			

Sun et al CCM 2016

Linking Index Admission with Readmission

Hospitalization Risk Factors

TABLE 6. Risk Factors Independently Associated With 30-Day Hospital Readmission After Sepsis Hospitalizations

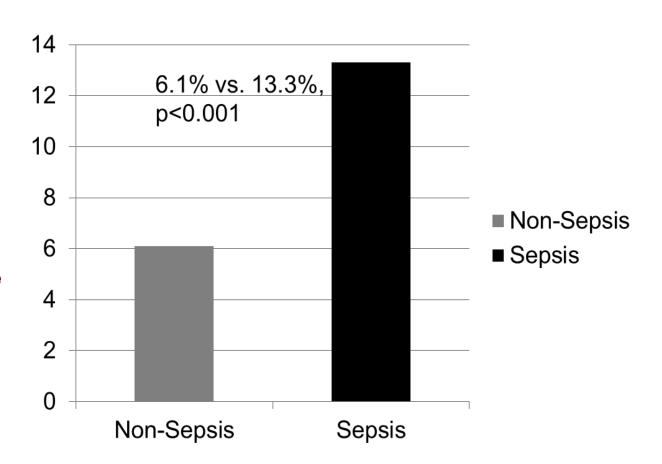

Duration of antibiotics was the lone risk factor associated with infection-related readmission

Model (n = 444)	Adjusted OR (95% CI)	P
Use of total parenteral nutrition	2.17 (1.08-4.33)	0.03
Duration of antibiotics, d	1.02 (1.00-1.04)	0.047
Prior hospitalizations		
0	Reference	Reference
1-5	2.12 (1.28-3.53)	0.004
>5	7.58 (2.81–20.48)	< 0.001
Discharge hemoglobin, g/dL	0.83 (0.70-0.99)	0.04

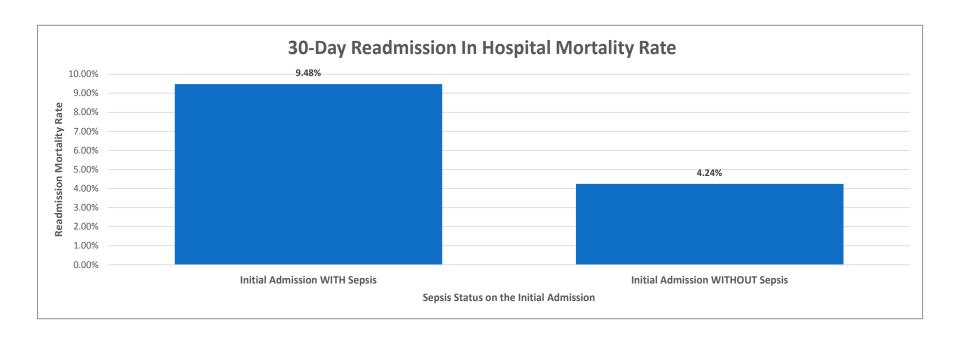
OR = odds ratio.

Sun et al Crit Care Med 2016

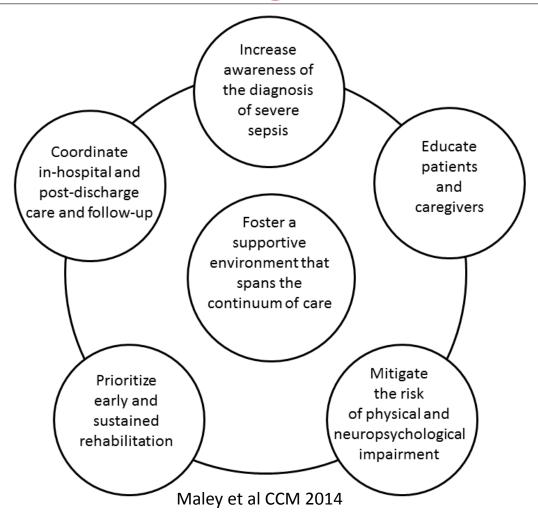
The Timing of the Infection Matters



Readmission Outcomes Are Worse After Sepsis


13-16% of readmissions after sepsis result in <u>death or transition to hospice</u>
Maley et al Clin Chest Med 2016

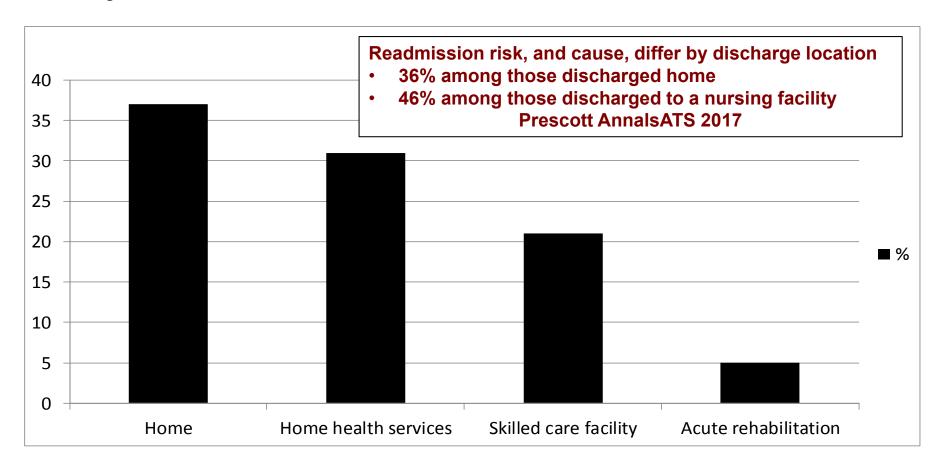
Highlight the potential role of targeted early palliative care



Jones et al Annals ATS 2015

Readmission Mortality after Sepsis: NYS Data

Moving Forward: Forge The Alliance



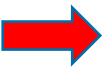
- Empower survivors, their caregivers, and their providers
- Start by calling it what it is: sepsis

Moving Forward: Optimize Care Coordination

Coordination of follow-up was <u>absent or too late</u> in **two-thirds** of UPHS septic shock survivors who were readmitted within 30 days

- Ortego et al Crit Care Med 2014

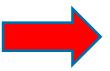
UPHS Data 2010 – 2015 for Sepsis Survivors


Discharge Planning: Room for Improvement

- Sepsis was rarely listed on the hospital discharge summary
- 76% of patients/caregivers were not provided instructions about what to do should the patient's condition worsens
- 90% of sepsis survivors readmitted within 30 days had no follow-up appointment scheduled or follow-up was scheduled > 10 days postdischarge
- 96% of patients/caregivers were not provided specific contact information to call if problems arose after hospital discharge

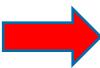
Qutulqutub Lumpkin BSN,CCRN, Julie Rogan MSN, CNS Chart review at Penn Presbyterian Medical Center

A Sepsis-Specific Approach at Discharge

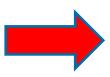

Raise Awareness

As a sepsis survivor, @NAME@ is at high risk for the following:

- Physical and cognitive impairment post-sepsis
- 30-day-all cause hospital readmission, with general risk in the 20-25% range at Penn.


Schedule timely follow-up and inform care providers

Recommend:


1. Follow-up within 7-10 days of discharge with primary care physician, including information re: patient's sepsis course, source, and antibiotic needs included in the discharge summary

Mitigate and manage new or worsening impairments

- 2. Assessment by physical and occupational therapy for home physical therapy or acute rehabilitation prior to discharge
- 3. Assessment of ability to manage medication list prior to discharge, given risk of cognitive impairment after sepsis, with recommendation to engage caregivers in healthcare needs if patient deemed high-risk for inability to manage medications and engage home health services

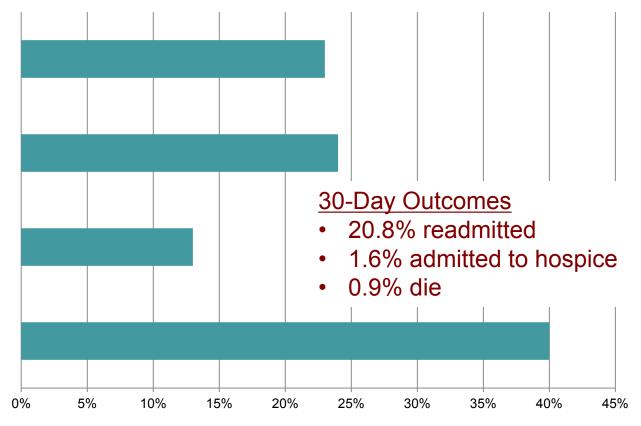
Be vigilant for new or recurrent infections, as 2 out of 3 survivors who present to the ED present with sepsis again

4. Timely evaluation of signs and symptoms suggestive of a recurrent or new infection, as the majority of 30-day hospital readmissions are due to a new or recurrent infection

Show the Life After Sepsis video with patients and their family at discharge www.sepsis.org/life-after-sepsis/

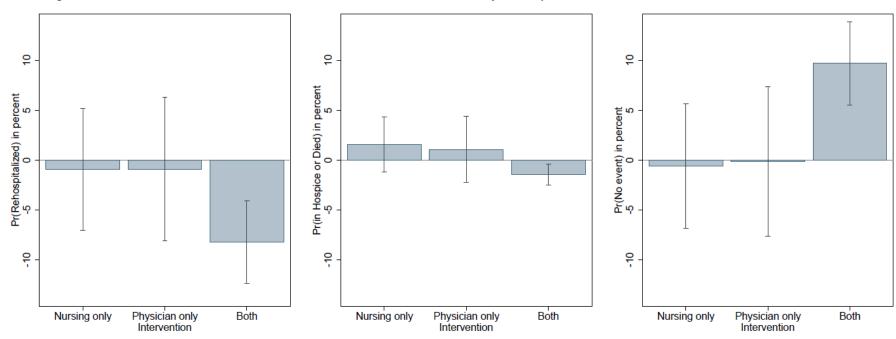
Surveillance: The Potential Benefit of Early and Intense Home Health Services

- Home health care is common and costly
 - 3.5 million beneficiaries received home health services
 - 30% of sepsis survivors discharged to home health care
 - \$17.9 billion
- Early and intensive home health nursing visits and early physician follow-up for sepsis survivors may reduce 30-day all-cause readmission rates


Heart Failure Study: Percent Receiving Each Treatment

Physician only (24%)

Both (13%)


Neither (40%)

Courtesy of Christopher Murtaugh

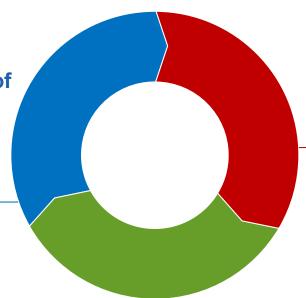
Frontloading Improves Outcomes in Heart Failure: Might It In Sepsis?

Figure 2. Treatment effects with 95% confidence intervals on 30-day rehospitalizations and other events

Note: Estimates from a multinomial logit model with control function adjustment for endogenous treatment.

Penn Home Health Program Design

	Physical	Occupational	Speech and	Skilled nursing
	Therapy	Therapy	Language	
2-4 times per		2-4 times per	2-4 times per	2-3 times per
	week	week	week 2 weeks	week
	2 weeks	2 weeks		2 weeks
a)	Mobility	a) Sleep	a) Aspiration	a) Education for
	program	hygiene	screening	patient and
b)	Daily	b) Daily ADL	b) Cognitive	family- Fact
	exercise	participation	linguistic	Sheet on Life
	program	c) Cognitive	training	after Sepsis
c)	Time spent	assessment		b) Surveillance
	out of bed	and		training
	daily	retraining		c) Medication
				education /
				reconciliation
				d) Anxiety &
				Depression


Prescott JAMA 2018

Screening Tool

Penn Medicine Sepsis Alliance: The Circle of Sepsis

The Penn Medicine Sepsis Alliance governs health system sepsis care activities with the goal of improving the early identification of sepsis and optimizing care management.

READMISSIONS:
Reduce the number of 7 day and 30 day readmissions after a hospitalization for sepsis.

RECOGNITION: Maximize recognition of sepsisassociated end organ dysfunction.

ADHERENCE: Improve adherence to the 3 hour SEP-1 bundle for inpatients and in the ED.

Acknowledgments

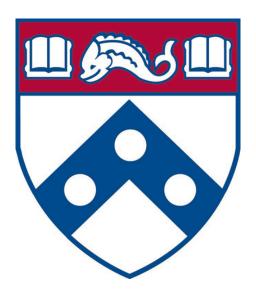
Collaborators & Co-Investigators

- Jack Iwashyna
- Hallie Prescott
- David Gaieski
- Alexandra Ortego
- Barry Fuchs
- Tiffanie Jones
- Scott Halpern
- S. Cham Sante
- Byron Drumheller
- Jason Christie
- Dylan Small
- Asaf Hanish
- Charles Baillie
- Craig Umscheid
- Meeta Kerlin
- Alexander Sun
- Brett Dietz
- Jason Maley
- Giora Netzer

NIH NINR Team

- Christopher Murtaugh
- Kathy Bowles
- Shivani Shah
- Partha Deb
- Stanley Moore
- Samuel Jackson

ExSEPSIS Team


- Maggie Miller
- Lisa Lesko
- Julie Rogan

SCCM & Thrive Team

- Jack Iwashyna
- Hallie Prescott
- Carol Thompson
- Adair Andrews
- And many others

Questions?

Please feel free to contact me at mark.mikkelsen@uphs.upenn.edu

Lessons Learned from SMOOTH

- SMOOTH tested whether, compared to usual care, patient training and case management could improve health-related quality of life
- The intervention, designed before readmission risk was known, focused on post-sepsis PICS-like symptoms

<u>Outcome</u>	Intervention	<u>Control</u>
SF-36 MCS	48.8 (12.5)	49.2 (12.6)
SF-36 PCS	25.9 (9.4)	24.7 (8.0)
Depression	36 (24.8)	32 (23.5)
PTSD	15.2%	14.0%
Cognition (TICS-M)	33.7 (3.4)	33.1 (3.9)

Schmidt et al JAMA 2016